Nerve Hamartomas - Fact or Fiction?

Jenna-Lynn Senger* and Rani Kanthan**

*Division of Plastic Surgery, University of Alberta, Canada
**Department of Pathology and Laboratory Medicine, University of Saskatchewan, Canada

Editorial

Hamartoma, derived from the Greek hamartia meaning "failure", is a benign malformation composed of local native tissues with disorganized growth. Hamartomas are the most common benign tumors of the lung and the pediatric heart (cardiac rhabdomyomas), though they can be found throughout the body in most anatomical structures. Though typically benign 'incidentalomas', they can cause adjacent compression of critical vessels and nerves, resulting in a myriad of clinical presentations. Within the peripheral nervous system, two types of nerve hamartomas have been described: a) fibrolipomatous hamartomas, and b) neuromuscular hamartomas.

a) Fibrolipomatous hamartomas (FLH) (aka lipomatous hamartoma, perineural lipoma, intraneural lipoma) are rare fibrofatty malformations of the peripheral nerve that most often arise in the first three decades of life, with more than 80% arising in the median nerve [1]. FLH have also been reported in digital, ulnar, radial, sciatric, peroneal, cranial nerves and brachial plexus [2,3]. These hamartomas form due to the overgrowth of the fibro adipose tissue surrounding and within nerve bundles, causing nerve enlargement [1]. Symptoms are therefore those of a compressive neuropathy, with carpal tunnel syndrome being the most common in afflictions of the median nerve. Bilateral cases of median nerve FLH are extremely rare [3]. Though most cases are isolated, up to one-third will present with macrodactyly; fibrolipomatous hamartoma in the setting of macrodactyly is termed 'macrodystrophia lipomatosa' [1]. Nerve conduction tests and electromyograms [EMGs] demonstrate sensory and motor disturbances; both ultrasound and MRI imaging show pathognomonic coaxial cable appearance [2]. Accurate histopathological diagnosis is challenging, as FLH has mature adipose and connective tissues that is intimately admixed with the nerve fibers by surrounding and infiltrating the nerve [1]. The differential diagnosis is thus large, and includes lipomatous neurofibroma, lipofibromatosis, lipomatosis, intraneural perineuroma [1].

b) Neuromuscular hamartomas (NMH) (aka neuromuscular choristomas, nerve rhabdomyoma, benign triton tumors) are rare benign intraneural tumors characterized by the intimate admixture of mature skeletal elements admixed with mature neural elements and no cellular atypia or atypical mitoses. Such hamartomas are hypothesized to arise from one of four mechanisms: i) muscle spindle hamartomatous growth, ii) skeletal muscle entrapment within the nerve during embryogenesis, iii) neuroectodermal differentiation into skeletal muscle, or iv) epigenetic alteration of motor end plates [4]. Similar to FLH, they most often present as a solitary lesion in childhood and have been commonly reported to occur as an enlarged fusiform mass in large nerves such as the sciatic and median nerves as well as the brachial plexus [5,6]. Rare accounts of these NMHs arising in obscure locations such as the head and neck have also been reported [4]. When involving the sciatic nerve, patients present with progressive limb deformity and neurologic deficits [5]. MRI is often nonspecific, showing a lesion of low to intermediate signal-intensity T1WI that may demonstrate fibromatosis. Though categorized as a 'hamartoma' and thus a benign entity, NMH are classified based on their location as FLH have mature adipose and connective tissues that is intimately admixed with the nerve fibers by surrounding and infiltrating the nerve [1]. The differential diagnosis is thus large, and includes lipomatous neurofibroma, lipofibromatosis, lipomatosis, intraneural perineuroma [1].
available literature being retrospective, anecdotal and predominantly case based reports. Treatment options of these rare nerve lesions range from conservative observation to invasive complete nerve resection. Most peripheral nerve surgeons advocate for nerve decompression in symptomatic patients with nerve biopsy to rule out malignancy. While most patients respond well to simple decompression, a select few will have recurrences that may require aggressive resection with an interpositional nerve graft [2]. If the motor branch is nonfunctional, or a long nerve graft is required, reconstruction using a distal nerve transfer should be considered. The use of aggressive resection as a first-line treatment, including epineurotomy and intraneural dissection, remains controversial in the published literature, with some authors reporting excellent results, though associated with the high risk of the significant morbidity of neuronal loss of sensory and/or motor function. As such, many advocate for these drastic resection measures to be reserved for repeated recurrences or when the nerve function deteriorates to the point where the possible morbidity of surgery is less than the morbidity of no treatment [2]. In the case of “benign” triton [NMH] tumors, aggressive excision is offered as the first line of management for the aggressive central type [4].

In conclusion, nerve hamartomas though extremely rare, do exist and are a real fact and not fiction. The natural history of these lesions remains largely unknown and is not fully characterized. These lesions are ascribed to be responsible as some of the rare causes of compression neuropathy with the potential to irreversibly influence motor and/or sensory function. Lipofibromatous hamartomas are benign tumors composed of fibrofatty tissue overgrowth and are therefore a “factual” hamartoma; however, accuracy of calling benign triton tumors a type of ‘hamartoma’ given the propensity of a subset for destructive growth is questionable. Despite their similar clinical pictures, differences in the natural history of these two tumor-types suggest the extent of surgical management should differ. Additionally, steps for the future may include revision in nomenclature with subsequent development of individualized treatment guidelines to ensure proper weighing of the risk of surgical morbidity with risk of tumor progression for best outcomes.

References